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1. Higgs mechanism in scalar QED by diagrams.

1.1. Gauge symmetry and massless photon.

Recall the QED Lagrangian

LQED = −1

4
Fµν(x)F µν(x) + ψ̄(ı∂µγ

µ − eAµγ
µ −m)ψ,

Fµν(x) = ∂µAν − ∂νAµ (1)

It is invariant under the gauge symmetry

Aµ(x)→ Aµ(x) +
1

e
∂µα(x), ψ(x)→ exp [ıα(x)]ψ(x) (2)

We are interested in total propagator for gauge field

Dµν(k) =< Ω|TAµ(k)Aν(−k)|Ω >=

D0
µν(k) +D0

µλ(k)P λσ(k)D0
σν(k) +D0

µλ(k)P λσ(k)D0
σρ(k)P ρτ(k)D0

τν(k) + ... (3)

1



which means the following sum of diagrams

=

+ + +

(4)

where

D0
µν(k) =

−ı
k2

(gµν −
kµkν
k2

) ≡ −ı
k2

(g⊥)µν (5)

is a free propagator and P µν(k) is a polarization operator which is given

by a sum of amputated diagrams which can not be devided by cutting one

of internal lines. Ward identity (see Appendix A)

kµP
µν(k) = 0 (6)

and Lorentz invariance constraint

P µν(k) = A(k2)gµν +B(k2)kµkν (7)

allow to write

P µν(k) = ı(k2gµν − kµkν)p(k2) = ık2gµν⊥ p(k
2) (8)

Then we can perform the summation in (??) and obtain

Dµν(k) =

−ı
k2

(g⊥)µν +
−ı
k2

(g⊥)µνp(k
2) +

−ı
k2

(g⊥)µνp
2(k2) + ... =

−ı(g⊥)µν
k2(1− p(k2))

(9)

where the relation

(g⊥)µνg
νλ(g⊥)λρ = (g⊥)µρ (10)

has been used.
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We see that

if p(k2) is regular function at k2 = 0 the photon stay massless.

Indeed, in the limit k2 → 0

Dµν(k)→ −ı(g⊥)µν
k2

Z3, Z3 =
1

1− p(0)

(11)

we have a massless photon with renormalized field strenght of Amu(x).

1.2. EM field interacting with scalar field and Higgs effect.

Let us consider the Lagrangian

L(A,ψ,Φ) = LEM + |DµΦ|2 + µ2Φ∗Φ− λ

4
(Φ∗Φ)2,

LEM = −1

4
(Fµν)

2, Dµ = ∂µ + ıeAµ (12)

Under the gauge transformation we have

Φ(x)→ exp [ıα(x)]Φ(x), ψ(x)→ exp [ıα(x)]ψ(x),

Aµ(x)→ Aµ(x)− 1

e
∂µα(x) (13)

Let us expand the complex scalar field Φ(x) around the minima Φ0 = µ√
λ

of its potential V (Φ) = −µ2

2 Φ∗Φ + λ
4(Φ∗Φ)2

Φ(x) = Φ0 +
1√
2

(φ1(x) + ıφ2(x)),

V (Φ) = −µ
4

4λ
+
µ2

2
φ2

1 +O(φ3) (14)

Hence, φ1 becomes massive while φ2 is massless (Goldstone boson)

(m1)
2 = µ2, (m2)

2 = 0 (15)
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Then we can write

(DµΦ)2 = (
1√
2
∂µφ+ ıeAµ(Φ0 +

φ√
2

)(
1√
2
∂µφ∗ − ıeAµ(Φ0 +

φ∗√
2

) =

1

2
((∂µφ1)

2 + (∂µφ2)
2) + e2Φ2

0AµA
µ +
√

2eΦ0A
µ∂µφ2 +

eAµ(φ1∂µφ2 − φ2∂µφ1) +
√

2e2φ1AµA
µ +

e2

2
(φ2

1 + φ2
2)AµA

µ =

1

2
((∂µφ1)

2 + (∂µφ2)
2) + e2Φ2

0AµA
µ +
√

2eΦ0A
µ∂µφ2 + ... (16)

we see the mass term e2Φ2
0AµA

µ appeared.

1.3. Higgs effect leads to a pole in photon polarization operator and generates

photon mass.

Now we will demonstrate that due to the Godstone’s boson exchange

the gauge field Aµ becomes massive because of the polarization operator

get pole.

From the quadratic terms we can read off the diagrams represented on

fig. 1.

Vector boson propagator:

−ı
k2

(g⊥)µν =

m n

(17)

Mass term vertex for the vector boson:

ı
m2
A

2
gµν =

m n (18)

Goldstone’s boson propagator:

ı

k2
=

(19)
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Vector boson Goldstone’s boson transition

kµmA = ı
√

2eΦ0(−ıkµ) =

−kµmA = ı
√

2eΦ0(ıkµ) =

(20)

The leading oder contribution to the polarization operator for the vector

boson is given by the Goldstone’s boson exchange:

P µν(k) = ım2
Ag

µν − kµmA
−ı
k2

(−kνmA) =

ım2
A(gµν − kµkν

k2
) = ım2

Ag
µν
⊥ (21)

which can be represented by the diagram on fig.2.:

P µν(k) = ım2
Ag

µν
⊥ =

m n
=

m n + m n (22)

Notice that P µν(k) is transverse and has a pole at k2 = 0.

Remark.

There is also a contribution to P µν(k) coming from the term eAµ(φ1∂µφ2−
φ2∂µφ1) (see (??). But it is much less then the contribution from

√
2eΦ0A

µ∂µφ2

term because Φ0 = µ√
λ

is bigger than the λ-perturbation theory series cor-

rections.

One can summ up all the diagrams represented on fig.3. to obtain the
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total propagator of the field Aµ(x)

Dµν(k) =
−ı
k2

(g⊥)µν +
−ı
k2

(g⊥)µλP
λσ(k)

−ı
k2

(g⊥)σν +

−ı
k2

(g⊥)µλP
λσ(k)

−ı
k2

(g⊥)σρP
ρτ(k)

−ı
k2

(g⊥)τν + ... =

−ı
k2

(g⊥)µν +
−ı
k2

(g⊥)µν
m2
A

k2
+
−ı
k2

(g⊥)µν
m4
A

k4
+ ... =

−ı
k2

(g⊥)µν

(1− m2
A

k2 )
= −ı (g⊥)µν

(k2 −m2
A)

(23)

Thus we see that gauge field becomes massive. From the other hand we

can write

Dµν(k) =
−ı

k2 −m2
A

(gµν −
kµkν
m2
A

) +
−ıkµkν
m2
Ak

2
(24)

The first term is a propagator for the vector field Aµ(x) with the Lagrangian

−1

4
F 2 − m2

A

2
AµA

µ (25)

The equations of motion for A:

∂µFµν +m2
AAν = 0⇒ ∂νAν = 0⇔ kνAν(k) = 0 (26)

Hence, Aµ has transverse polarization but the Lagrangian (??) gives non-

renormalizable theory because of the term
kµkν
m2
A

in the propagator. Fortu-

nately the last term from (??) cure the problem.

2. QED and Higgs effect in t’Hooft gauge fixing.

2.1. The Lagrangian and Higgs mechanism.

L = −1

4
(Fµν)

2 + |DµΦ|2 − V (Φ),

V (Φ) = −µ2Φ∗Φ +
λ

2
(Φ∗Φ)2, Φ =

1√
2

(Φ1 + ıΦ2)

Dµ = ∂µ + ıeAµ (27)
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Gauge transformations are given by

δΦ1 = −α(x)Φ2, δΦ2 = α(x)Φ1, δAµ = −1

e
∂µα (28)

One can expand the potential V (Φ) around the vacuum:

Φ0 =
1√
2
v =

√
2

λ
µ,

∂V

∂ΦiΦ=Φ0

= 0,

Φ(x) = Φ0 +
1√
2

(h(x) + ıφ(x)),

V (h, φ) = −µ
4

2λ
+ µ2h2(x) +

λ

8
(4vh3(x) + h4(x)) +

λ

4
(2vh(x) + h2(x))φ2(x) +

λ

8
φ4(x) (29)

Then we rewrite the covariant derivative term by the fields h(x) and φ(x):

|DµΦ|2 =
1

2
(∂µh− eAµφ)2 +

1

2
(∂µφ+ eAµ(v + h))2 =

1

2
[(∂µh)2 + (∂µφ)2 + e2v2AµA

µ + 2evAµ∂µφ(x)

−2eφ(x)Aµ(x)∂µh(x) + 2eh(x)Aµ∂µφ(x)

e2(2vh(x) + h2(x) + φ2(x))AµA
µ] (30)

The gauge transformations take the form

δh = −α(x)h, δφ = α(x)(v + h), δAµ = −1

e
∂µα(x) (31)

2.2. Paths integral and t’Hooft’s gauge fixing.

Now we are interested in the paths integral

Z =

∫
[DA][Dh][Dφ] exp [ı

∫
d4xL(A, h, φ)] =

C

∫
[DA][Dh][Dφ] exp [ı

∫
d4xL(A, h, φ)]det(

δG

δα
)δ(G(A, h, φ)) (32)

where the gauge fixing has been introduced by a function G(A, h, φ) = 0

and the result of integration over the gauge transformation orbits has been
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taken into account by the factor C. One also can change the gauge fixing

conditions by a more general ones

G(A, h, φ) = 0→ G(A, h, φ)− ω(x) = 0 (33)

and integrate out over all possible functions ω(x) weighted by exp [−ı
∫
d4xω(x)2

2ξ ]:

Z =

N(ξ)

∫
[DA][Dh][Dφ][Dω] exp [−ı

∫
d4x

ω(x)2

2ξ
]

exp [ı

∫
d4xL(A, h, φ)]det(

δG

δα
)δ(G(A, h, φ)− ω) =

N(ξ)

∫
[DA][Dh][Dφ] exp [ı

∫
d4x(L(A, h, φ)− 1

2ξ
G2)]det(

δG

δα
) (34)

In what follows we redefine G2

ξ → G2.

There is a good choice of G:

G =
1√
ξ

(∂µA
µ − ξevφ) (35)

Notice that gauge condition depends on the Goldstone field Then

L(A, h, φ)− 1

2
G2 =

1

2
Aµ[gµν(∂)2 + (

1

ξ
− 1)∂µ∂ν + (ev)2]Aν

+
1

2
(∂µh)2 − 1

2
2µ2h2 +

1

2
(∂µφ)2 − ξ

2
(ev)2φ2

−eφAµ∂
µh+ ehAµ∂

µφ+
e2

2
(2vh+ h2 + φ2)AµA

µ +

µ2

2λ
− λ

8
(4v + h)h3 − λ

4
(2v + h)hφ2 − λ

8
φ4 =

1

2
Aµ[gµν(∂)2 + (

1

ξ
− 1)∂µ∂ν + (ev)2]Aν

+
1

2
(∂µh)2 − 1

2
2µ2h2 +

1

2
(∂µφ)2 − ξ

2
(ev)2φ2 + ... (36)

We see that G2 term contains the old gauge fixing condition

(∂µAµ)2.
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The cross term in G2 is engineered to cancel the term Aµ∂µφ

term in the Lagrangian (??).

One can see also that the Higgs field h, get mass m2
h = 2µ2 from

the expansion of V around minimum.

The gauge boson Aµ get mass m2
A = (ev)2 from the Higgs effect.

Notice also that Goldstone boson φ get the mass ξ(ev)2, but this mass

depends on gauge fixing. This should hint to us that Goldstone field

is unphysical (fictitious). Indeed, due to inhomogeneous term in the

gauge transformatione rule (??) of φ, one can get rid this field.

Now one needs to introduce Faddeev-Popov ghosts calculating δG
δα :

δG

δα
=

1√
ξ

(−1

e
(∂)2 − ξev(v + h))⇒

det(
δG

δα
) =∫

[Dc][Dc̄] exp [−ı
∫
d4xc̄(x)

1

e
√
ξ

(−(∂)2 − ξm2
A(1 +

h

v
))c(x)] (37)

Note that although we are dealing with an abelian gauge theory

the ghosts fields can not be ignored because of they interract to

the Higgs field.

2.3. Propagators and their poles.

Now we can extract the propagators for all the fields from (??), (??).

The propagator for Aµ(x) is the inverse to the operator

gµνk2 − (1− 1

ξ
)kµkν −m2

Ag
µν = gµν(k2 −m2

A)− (1− 1

ξ
)kµkν (38)

Hence

< Aν(k)Aλ(−k) >=
−ı

k2 −m2
A

(gνλ − (1− ξ) kνkλ
k2 − ξm2

A

) =

−ı
k2 −m2

A

(gνλ −
kνkλ
m2
A

) +
−ıkνkλ

m2
A(k2 − ξm2

A)
(39)

Thus, we are almost back to the progataor (??).
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Propagator for Higgs field is

< h(k)h(−k) >=
ı

k2 −m2
h

(40)

Propagator for Goldstone field is

< φ(k)φ(−k) >=
ı

k2 − ξm2
A

(41)

Propagator for gosts c field is

< c(k)c(−k) >=
ı

k2 − ξm2
A

(42)

We see that poles for propagators Aµ and Goldstone φ are at the

same place. It will lead to concelations in all physical amplitudes in such

a way that the result will not be dependent on ξ.

In other words, one can show that Green’s functions and S-

matrix of gauge invariant operators will not depend on ξ.

This statement can be proved by BRST symmetry but we will show this

in some particular example.

2.4. Renormalizability and unitarirty.

Using the freedom to choose the value of ξ one can make two important

observations.

1. ξ = 0.

In this case all the propagators fall as 1
k2 . So that one can apply the

standard analysis of diagrams divergences to conclude that the theory is

renormalizable.

2. ξ =∞.

Then

< Aν(k)Aλ(−k) >=
−ı

k2 −m2
A

(gνλ −
kνkλ
m2
A

)

< φ(k)φ(−k) >= 0

< c(k)c(−k) >= 0 (43)
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Thus, the unphysical fields φ and c does not propagate. At the same time,

the gauge field has on mass-shell only 3 space-like polarizations. Indeed,

the tensor part of the propagator for Aµ is given by the sum over the

polarizations: ∑
ε⊥k

ενεµ = δνµ −
kνkµ
m2
A

(44)

But in the own reference system of vector particle the right hand side of

(??) is nothing else but the projection operator on the space-like directions.

Hence, the theory is unitary.

2.5. Higgs effect for fermions.

Now we are going to demonstrate ξ-independence of amplitudes by an

example.

Let us add the massless fermions and consider the Lagrangian

L(A, h, φ, ψ) = L(A, h, φ) +

ψ̄L(ıγµDµ)ψL + ψ̄R(ıγµ∂µ)ψR − λf(ψ̄LΦψR + ψ̄RΦ∗ψL),

Dµ = ∂µ + ıeAµ (45)

The gauge transformations for fermions are given by

ψL → exp (ıα(x))ψL, ψR → ψR (46)

Notice that the left-chiral fermions ψL(x) and right-chiral fermions

ψR(x) have different gauge transformation rules. The right-chiral

fermions are singlets w.r.t. the gauge group U(1) so they do not interract

with the EM field, while the left-chiral fermions transform by the standard

rules so that they interract to EM field. This left-right asymmetry is sim-

ilar to that in the Standard Model of electro-week interractions. At the

same time the fermions interract with the complex scalar field in sach a way
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to conserve the gauge invariance and get the masses by the Higgs mecha-

nism. Thus, the Lagrangian (??) is similar to the Standard-Model

Lagrangian.

To see the Higgs effect for fermions we rewrite the interraction terms

using the left-right chirality projectors 1±γ5
2 :

λf(ψ̄LΦψR + ψ̄RΦ∗ψL) =

λf(Φψ̄
1 + γ5

2
ψ + Φ∗ψ̄

1− γ5

2
ψ) =

λf√
2

((v + h(x) + ıφ(x))ψ̄
1 + γ5

2
ψ +

(v + h(x)− ıφ(x))ψ̄
1− γ5

2
ψ) =

λf√
2

((v + h(x))ψ̄ψ + ıφ(x)ψ̄γ5ψ) =

mf ψ̄ψ +
λf√

2
(h(x)ψ̄ψ + ıφ(x)ψ̄γ5ψ),

mf =
λfv√

2
(47)

Thus, the fermions become massive.

2.6. Green’s functions do not depend on gauge fixing: Example.

We want to calculate main contribution to the fermion-fermion scatter-

ing amplitude in this theory. It is given by three diagrams:

p1

p2

k1

k2

A
+

p1

p2

k1

k2

phi
+

p1

p2

k1

k2

h

(48)

In the first diagram the fermions exchange by the gauge field Aµ. Ac-
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cording to the Feinmann rules this amplitude is given by

ıMA = (−ıe)2ū(p2)γµ
1− γ5

2
u(p1)

−ı
q2 −m2

A

(gµν − (1− ξ) qµqν

q2 − ξm2
A

)ū(k2)γν
1− γ5

2
u(k1) =

(−ıe)2ū(p2)γµ
1− γ5

2
u(p1)

(
−ı

q2 −m2
A

(gµν − qµqµ

m2
A

) +
−ıqµqµ

m2
A(q2 − ξm2

A)
)ū(k2)γν

1− γ5

2
u(k1) =

(−ıe)2ū(p2)γµ
1− γ5

2
u(p1)

−ı
q2 −m2

A

(gµν − qµqµ

m2
A

)ū(k2)γν
1− γ5

2
u(k1) +

(−ıe)2ū(p2)γµ
1− γ5

2
u(p1)

−ıqµqµ

m2
A(q2 − ξm2

A)
ū(k2)γν

1− γ5

2
u(k1) (49)

Now we rewrite the second term using the momentum conservation low

q = p1 − p2 and Dirac equation of motion pµγµu(p) = mfu(p):

ū(p2)q
µγµ

1− γ5

2
u(p1) =

1

2
ū(p2)((p1 − p2)

µγµ − (p1 − p2)
µγµγ

5)u(p1) =

1

2
ū(p2)(p1 − p2)

µγµu(p1) +
1

2
ū(p2)(γ

5γµ(p1)µ + (p2)µγ
µγ5)u(p1) =

1

2
ū(p2)(mf −mf)u(p1) +

1

2
ū(p2)(mfγ

5 +mfγ
5)u(p1) =

mf ū(p2)γ
5u(p1) (50)

Hence, the amplitude takes the form

(−ıe)2ū(p2)γµ
1− γ5

2
u(p1)

−ı
q2 −m2

A

(gµν − qµqµ

m2
A

)ū(k2)γν
1− γ5

2
u(k1) +

λ2
f

2
ū(p2)γ

5u(p1)
−ı

q2 − ξm2
A

ū(k2)γ
5u(k1) (51)

In the second diagram the fermions exchange by the Goldstone field φ.
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According to the Feinmann rules this amplitude is given by

ıMφ =
λ2
f

2
ū(p2)γ

5u(p1)
ı

q2 − ξm2
A

ū(k2)γ
5u(k1) (52)

Therefore

ıMA + ıMφ =

(−ıe)2ū(p2)γµ
1− γ5

2
u(p1)

−ı
q2 −m2

A

(gµν − qµqµ

m2
A

)ū(k2)γν
1− γ5

2
u(k1) (53)

so the result does not depend on ξ.

In the third diagram the fermions exchange by the Higgs field h so this

amplitude does not depend on ξ. Thus we have shown the ξ-dependent

contributions mutual cancellation in the total fermion scattering

amplitude.

Appendix A. Ward identity for polarization operator in QED.

Let us consider the correlation function

I[Jν(y)] =

∫
[DA][Dψ][Dψ̄]eψ̄(y)γνψ(y) exp [ı

∫
d4xLQED] (54)

Because of the measure [Dψ][Dψ̄] in (??) is invariant under the changes of

variables

ψ(x)→ ψ́ = ψ(x) + ıeα(x)ψ(x), ψ̄(x)→ ´̄ψ(x) = ψ̄(x)− ıeα(x)ψ̄(x) (55)

where α(x) is a small variation and the current is also invariant

ψ̄(y)γνψ(y)→ ψ̄(y)γνψ(y) (56)

the paths integral (??) is unchanged:∫
[DA][Dψ][Dψ̄]eψ̄(y)γνψ(y) exp [ı

∫
d4xLQED] =∫

[DA][Dψ́][D ´̄ψ]e ´̄ψ(y)γνψ́(y) exp [ı

∫
d4xLQED] (57)
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From the other hand LQED → LQED − e(∂µα)(x)ψ̄(x)γµψ(x), therefore

0 = δαI[Jν] =∫
[DA][Dψ][Dψ̄](−ı

∫
d4x∂µα(x)Jµ(x)Jν(y)) exp [ı

∫
d4uLQED]⇒

δαI[Jν]

Z
= ı∂µ < Ω|TJµ(x)Jν(y)|Ω >= 0 (58)

Then making the Fourier transform and taken into account the transla-

tion invariance the identity (??) takes the form

kµP
µν(k) = δ(k1 + k2)k1µP

µν(k1, k2) =∫
d4xd4y(k1)µ exp [−ı(k1x+ k2y)] < Ω|TJµ(x)Jν(y)|Ω >=

ı

∫
d4xd4y(

∂

∂xµ
exp [−ı(k1x+ k2y)]) < Ω|TJµ(x)Jν(y)|Ω >=

−ı
∫
d4xd4y exp [−ı(k1x+ k2y)]

∂

∂xµ
< Ω|TJµ(x)Jν(y)|Ω >= 0 (59)

Or

∂µ < Ω|TJµ(x)Jν(y)|Ω >=∫
d4k1d

4k2ı(k1)µP
µν(k1, k2) exp [ık1x+ ık2y] = 0 (60)

15


